Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 11: 1368372, 2024.
Article in English | MEDLINE | ID: mdl-38455766

ABSTRACT

According to the fifth edition of the WHO Classification of Tumours of the Central Nervous System (CNS) published in 2021, grade 4 gliomas classification includes IDH-mutant astrocytomas and wild-type IDH glioblastomas. Unfortunately, despite precision oncology development, the prognosis for patients with grade 4 glioma remains poor, indicating an urgent need for better diagnostic and therapeutic strategies. Circulating miRNAs besides being important regulators of cancer development could serve as promising diagnostic biomarkers for patients with grade 4 glioma. Here, we propose a two-miRNA miR-362-3p and miR-6721-5p screening signature for serum for non-invasive classification of identified glioma cases into the highest-grade 4 and lower-grade gliomas. A total of 102 samples were included in this study, comprising 78 grade 4 glioma cases and 24 grade 2-3 glioma subjects. Using the NanoString platform, seven miRNAs were identified as differentially expressed (DE), which was subsequently confirmed via RT-qPCR analysis. Next, numerous combinations of DE miRNAs were employed to develop classification models. The dual panel of miR-362-3p and miR-6721-5p displayed the highest diagnostic value to differentiate grade 4 patients and lower grade cases with an AUC of 0.867. Additionally, this signature also had a high AUC = 0.854 in the verification cohorts by RT-qPCR and an AUC = 0.842 using external data from the GEO public database. The functional annotation analyses of predicted DE miRNA target genes showed their primary involvement in the STAT3 and HIF-1 signalling pathways and the signalling pathway of pluripotency of stem cells and glioblastoma-related pathways. For additional exploration of miRNA expression patterns correlated with glioma, we performed the Weighted Gene-Co Expression Network Analysis (WGCNA). We showed that the modules most associated with glioma grade contained as many as six DE miRNAs. In conclusion, this study presents the first evidence of serum miRNA expression profiling in adult-type diffuse glioma using a classification based on the WHO 2021 guidelines. We expect that the discovered dual miR-362-3p and miR-6721-5p signatures have the potential to be utilised for grading gliomas in clinical applications.

2.
Sci Rep ; 13(1): 19287, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935712

ABSTRACT

Epithelial ovarian cancer (EOC) is one of the leading cancers in women, with high-grade serous ovarian cancer (HGSOC) being the most common and lethal subtype of this disease. A vast majority of HGSOC are diagnosed at the late stage of the disease when the treatment and total recovery chances are low. Thus, there is an urgent need for novel, more sensitive and specific methods for early and routine HGSOC clinical diagnosis. In this study, we performed miRNA expression profiling using the NanoString miRNA assay in 34 serum samples from patients with HGSOC and 36 healthy women. We identified 13 miRNAs that were differentially expressed (DE). For additional exploration of expression patterns correlated with HGSOC, we performed weighted gene co-expression network analysis (WGCNA). As a result, we showed that the module most correlated with tumour size, nodule and metastasis contained 8 DE miRNAs. The panel including miR-1246 and miR-150-5p was identified as a signature that could discriminate HGSOC patients with AUCs of 0.98 and 1 for the training and test sets, respectively. Furthermore, the above two-miRNA panel had an AUC = 0.946 in the verification cohorts of RT-qPCR data and an AUC = 0.895 using external data from the GEO public database. Thus, the model we developed has the potential to markedly improve the diagnosis of ovarian cancer.


Subject(s)
Cystadenocarcinoma, Serous , MicroRNAs , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/genetics , Cystadenocarcinoma, Serous/diagnosis , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Biomarkers, Tumor
3.
Front Oncol ; 13: 1209299, 2023.
Article in English | MEDLINE | ID: mdl-37546401

ABSTRACT

Non-small cell lung cancer (NSCLC) comprises 85% of all lung cancers and is a malignant condition resistant to advanced-stage treatment. Despite the advancement in detection and treatment techniques, the disease is taking a deadly toll worldwide, being the leading cause of cancer death every year. Current diagnostic methods do not ensure the detection of the disease at an early stage, nor can they predict the risk of its development. There is an urgent need to identify biomarkers that can help predict an individual's risk of developing NSCLC, distinguish NSCLC subtype, allow monitor disease and treatment progression which can improve patient survival. Micro RNAs (miRNAs) represent the class of small and non-coding RNAs involved in gene expression regulation, influencing many biological processes such as proliferation, differentiation, and carcinogenesis. Research reports significant differences in miRNA profiles between healthy and neoplastic tissues in NSCLC. Its abundant presence in biofluids, such as serum, blood, urine, and saliva, makes them easily detectable and does not require invasive collection techniques. Many studies support miRNAs' importance in detecting, predicting, and prognosis of NSCLC, indicating their utility as a promising biomarker. In this work, we reviewed up-to-date research focusing on biofluid miRNAs' role as a diagnostic tool in NSCLC cases. We also discussed the limitations of applying miRNAs as biomarkers and highlighted future areas of interest.

5.
Front Endocrinol (Lausanne) ; 13: 888948, 2022.
Article in English | MEDLINE | ID: mdl-35663309

ABSTRACT

The increasing morbidity and mortality of type 2 diabetic mellitus (T2DM) patients with ischemic heart disease (IHD) highlight an urgent need to identify early biomarkers, which would help to predict individual risk of development of IHD. Here, we postulate that circulating serum-derived micro RNAs (miRNAs) may serve as potential biomarkers for early IHD diagnosis and support the identification of diabetic individuals with a predisposition to undergo IHD. We obtained serum samples from T2DM patients either with IHD or IHD-free and analysed the expression levels of 798 miRNAs using the NanoString nCounter technology platform. The prediction of the putative miRNAs targets was performed using the Ingenuity Pathway Analysis (IPA) software. Gene Ontology (GO) analysis was used to identify the biological function and signalling pathways associated with miRNA target genes. Hub genes of protein-protein interaction (PPI) network were identified by STRING database and Cytotoscape tool. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of identified miRNAs. Real-time quantitative polymerase chain reaction (qRT-PCR) was used for nCounter platform data validation. Our data showed that six miRNAs (miR-615-3p, miR-3147, miR-1224-5p, miR-5196-3p, miR-6732-3p, and miR-548b-3p) were significantly upregulated in T2DM IHD patients compared to T2DM patients without IHD. Further analysis indicated that 489 putative target genes mainly affected the endothelin-1 signalling pathway, glucocorticoid biosynthesis, and apelin cardiomyocyte signalling pathway. All tested miRNAs showed high diagnostic value (AUC = 0.779 - 0.877). Taken together, our research suggests that circulating miRNAs might have a crucial role in the development of IHD in diabetic patients and may be used as a potential biomarker for early diagnosis.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Myocardial Ischemia , Biomarkers , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Gene Expression Profiling , Humans , MicroRNAs/genetics , Myocardial Ischemia/complications , Myocardial Ischemia/diagnosis , Myocardial Ischemia/genetics
6.
Front Endocrinol (Lausanne) ; 13: 839344, 2022.
Article in English | MEDLINE | ID: mdl-35340328

ABSTRACT

Introduction: Circulating miRNAs are important mediators in epigenetic changes. These non-coding molecules regulate post-transcriptional gene expression by binding to mRNA. As a result, they influence the development of many diseases, such as gestational diabetes mellitus (GDM). Therefore, this study investigates the changes in the miRNA profile in GDM patients before hyperglycemia appears. Materials and Methods: The study group consisted of 24 patients with GDM, and the control group was 24 normoglycemic pregnant women who were matched for body mass index (BMI), age, and gestational age. GDM was diagnosed with an oral glucose tolerance test between the 24th and 26th weeks of pregnancy. The study had a prospective design, and serum for analysis was obtained in the first trimester of pregnancy. Circulating miRNAs were measured using the NanoString quantitative assay platform. Validation with real time-polymerase chain reaction (RT-PCR) was performed on the same group of patients. Mann-Whitney U-test and Spearman correlation were done to assess the significance of the results. Results: Among the 800 miRNAs, 221 miRNAs were not detected, and 439 were close to background noise. The remaining miRNAs were carefully investigated for their average counts, fold changes, p-values, and false discovery rate (FDR) scores. We selected four miRNAs for further validation: miR-16-5p, miR-142-3p, miR-144-3p, and miR-320e, which showed the most prominent changes between the studied groups. The validation showed up-regulation of miR-16-5p (p<0.0001), miR-142-3p (p=0.001), and miR-144-3p (p=0.003). Conclusion: We present changes in miRNA profile in the serum of GDM women, which may indicate significance in the pathophysiology of GDM. These findings emphasize the role of miRNAs as a predictive factor that could potentially be useful in early diagnosis.


Subject(s)
Circulating MicroRNA , Diabetes, Gestational , MicroRNAs , Diabetes, Gestational/diagnosis , Diabetes, Gestational/genetics , Early Diagnosis , Female , Humans , MicroRNAs/metabolism , Pregnancy , Prospective Studies
7.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163477

ABSTRACT

The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target of miRNAs due to their regulatory function on AR gene expression. A deeper understanding of the AR-miRNA interactions may contribute to the development of better diagnostic tools as well as to providing new therapeutic approaches. While most studies usually focus on the role of miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and AR-independent diseases.


Subject(s)
MicroRNAs/genetics , Neoplasms/genetics , Receptors, Androgen/genetics , Biomarkers, Tumor/genetics , Early Detection of Cancer , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/diagnosis
8.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808800

ABSTRACT

Type 2 diabetes mellitus (T2DM) and its complications pose a serious threat to the life and health of patients around the world. The most dangerous complications of this disease are vascular complications. Microvascular complications of T2DM include retinopathy, nephropathy, and neuropathy. In turn, macrovascular complications include coronary artery disease, peripheral artery disease, and cerebrovascular disease. The currently used diagnostic methods do not ensure detection of the disease at an early stage, and they also do not predict the risk of developing specific complications. MicroRNAs (miRNAs) are small, endogenous, noncoding molecules that are involved in key processes, such as cell proliferation, differentiation, and apoptosis. Recent research has assigned them an important role as potential biomarkers for detecting complications related to diabetes. We suggest that utilizing miRNAs can be a routine approach for early diagnosis and prognosis of diseases and may enable the development of better therapeutic approaches. In this paper, we conduct a review of the latest reports demonstrating the usefulness of miRNAs as biomarkers in the vascular complications of T2DM.


Subject(s)
Biomarkers , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , MicroRNAs/genetics , Animals , Gene Expression Regulation , Humans , Prognosis , Transcription, Genetic
9.
J Clin Med ; 9(7)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664305

ABSTRACT

Due to a global increase in the prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need for early identification of prediabetes, as these people have the highest risk of developing diabetes. Circulating miRNAs have shown potential as progression biomarkers in other diseases. This study aimed to conduct a baseline comparison of serum-circulating miRNAs in prediabetic individuals, with the distinction between those who later progressed to T2DM and those who did not. The expression levels of 798 miRNAs using NanoString technology were examined. Spearman correlation, receiver operating characteristic (ROC) curve analysis, and logistic regression modeling were performed. Gene ontology (GO) and canonical pathway analysis were used to explore the biological functions of the miRNA target genes. The study revealed that three miRNAs were upregulated in the serum samples of patients who later progressed to T2DM. Pathway analysis showed that the miRNA target genes were mainly significantly enriched in neuronal NO synthase (nNOS) signaling in neurons, amyloid processing, and hepatic cholestasis. ROC analysis demonstrated that miR-491-5p, miR-1307-3p, and miR-298 can be introduced as a diagnostic tool for the prediction of T2DM (area under the curve (AUC) = 94.0%, 88.0%, and 84.0%, respectively). Validation by real-time quantitative polymerase chain reaction (qRT-PCR) confirmed our findings. The results suggest that circulating miRNAs can potentially be used as predictive biomarkers of T2DM in prediabetic patients.

10.
Int J Mol Sci ; 21(4)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093387

ABSTRACT

Multiple mechanisms have been suggested to confer to the pathophysiology of metabolic syndrome (MetS), however despite great interest from the scientific community, the exact contribution of each of MetS risk factors still remains unclear. The present study aimed to investigate molecular signatures in peripheral blood of individuals affected by MetS and different degrees of obesity. Metabolic health of 1204 individuals from 1000PLUS cohort was assessed, and 32 subjects were recruited to four study groups: MetS lean, MetS obese, "healthy obese", and healthy lean. Whole-blood transcriptome next generation sequencing with functional data analysis were carried out. MetS obese and MetS lean study participants showed the upregulation of genes involved in inflammation and coagulation processes: granulocyte adhesion and diapedesis (p < 0.0001, p = 0.0063), prothrombin activation pathway (p = 0.0032, p = 0.0091), coagulation system (p = 0.0010, p = 0.0155). The results for "healthy obese" indicate enrichment in molecules associated with protein synthesis (p < 0.0001), mitochondrial dysfunction (p < 0.0001), and oxidative phosphorylation (p < 0.0001). Our results suggest that MetS is related to the state of inflammation and vascular system changes independent of excess body weight. Furthermore, "healthy obese", despite not fulfilling the criteria for MetS diagnosis, seems to display an intermediate state with a lower degree of metabolic abnormalities, before they proceed to a full blown MetS.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Metabolic Syndrome/metabolism , Obesity/metabolism , Transcriptome , Adult , Biomarkers/metabolism , Body Mass Index , Female , Humans , Male , Metabolic Syndrome/genetics , Middle Aged , Obesity/genetics
11.
Cancers (Basel) ; 11(12)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817685

ABSTRACT

The role of circulating tumor cells (CTCs), tumor microenvironment (TME), and the immune system in the formation of metastasis is evident, yet the details of their interactions remain unknown. This study aimed at exploring the immunotranscriptome of primary tumors associated with the status of CTCs in breast cancer (BCa) patients. The expression of 730 immune-related genes in formalin-fixed paraffin-embedded samples was analyzed using the multigenomic NanoString technology and correlated with the presence and the phenotype of CTCs. Upregulation of 37 genes and downregulation of 1 gene were observed in patients characterized by a mesenchymal phenotype of CTCs when compared to patients with epithelial CTCs. The upregulated genes were involved in NF-kappa B signaling and in the production of type I interferons. The clinical significance of the differentially expressed genes was evaluated using The Cancer Genome Atlas (TCGA) data of a breast invasive carcinoma (BRCA) cohort. Five of the upregulated genes-PSMD7, C2, IFNAR1, CD84, and CYLD-were independent prognostic factors in terms of overall and disease-free survival. To conclude, our data identify a group of genes that are upregulated in BCa patients with mesenchymal CTCs and reveal their prognostic potential, thus indicating that they merit further investigation.

12.
Cancers (Basel) ; 12(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877723

ABSTRACT

Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies consisting essentially of adenocarcinoma (ADC) and squamous cell carcinoma (SCC). Although the diagnosis and treatment of ADC and SCC have been greatly improved in recent decades, there is still an urgent need to identify accurate transcriptome profile associated with the histological subtypes of NSCLC. The present study aims to identify the key dysregulated pathways and genes involved in the development of lung ADC and SCC and to relate them with the clinical traits. The transcriptional changes between tumour and normal lung tissues were investigated by RNA-seq. Gene ontology (GO), canonical pathways analysis with the prediction of upstream regulators, and weighted gene co-expression network analysis (WGCNA) to identify co-expressed modules and hub genes were used to explore the biological functions of the identified dysregulated genes. It was indicated that specific gene signatures differed significantly between ADC and SCC related to the distinct pathways. Of identified modules, four and two modules were the most related to clinical features in ADC and SCC, respectively. CTLA4, MZB1, NIP7, and BUB1B in ADC, as well as GNG11 and CCNB2 in SCC, are novel top hub genes in modules associated with tumour size, SUVmax, and recurrence-free survival. Our research provides a more effective understanding of the importance of biological pathways and the relationships between major genes in NSCLC in the perspective of searching for new molecular targets.

13.
Sci Rep ; 9(1): 2394, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787377

ABSTRACT

The altered expression pattern of miRNAs might potentially reflect anomalies related to foetal chromosomal aberrations. The aim of the study was to determine the expression level of miRNAs in plasma of pregnant women with foetal Down syndrome (DS). Out of 198 amniocentesis performed at 15-18 weeks of gestation, within a group of 12 patients with foetal DS and 12 patients with uncomplicated pregnancies, who delivered healthy newborns at term, we examined the expression level of 800 miRNAs using the NanoString technology. Our study revealed that there are 6 miRNAs were upregulated (hsa-miR-15a, hsa-let-7d, hsa-miR-142, hsa-miR-23a, hsa-miR-199, hsa-miR-191) and 7 were downregulated (hsa-miR-1290, hsa-miR-1915, hsa-miR30e, hsa-miR-1260, hsa-miR-483, hsa-miR-548, hsa-miR-590) in plasma samples of women with foetal DS syndrome. The genes regulated by identified miRNAs are involved in central nervous system development, congenital abnormalities and heart defects. The results of the present study yielded information on DS-specific miRNA expression signature, which can further help to design a panel of miRNAs as a non-invasive test for DS diagnosis. We believe that identified miRNAs may attend in the pathogenesis of DS and would potentially make a significant role for the future preventive therapies.


Subject(s)
Amniocentesis , Amniotic Fluid/metabolism , Circulating MicroRNA/metabolism , Down Syndrome/diagnosis , Adult , Biomarkers/metabolism , Down-Regulation , Female , Gene Expression Profiling/methods , Humans , Pregnancy , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...